丙酮酸激酶

时间:2024-07-02 18:11:25编辑:阿星

丙酮酸激酶的介绍

丙酮酸激酶(pyruvate kinase,PK),别名丙酮酸磷转称酶、磷酸丙酮酸激酶,其分子式wieC9H9N,缩写式为ATP:丙酮酸-2-O-磷酸转移酶。在糖酵解系统里,它是催化形成第二个ATP反应的酶。EC2.7.1.40。能以磷酸烯醇(phosphoenolpyruv- ate)丙酮酸和ADP生成丙酮酸和ATP·ΔGo1=-7.5kcal。除需要二价金属离子外(Mg2+和Mn2+)外,还需要一价金属离子(K+.Rb+,Cs+),在生理上起作用的大概是K+。分子量约25万。是催化ADP为ATP的形成,结果是形成丙酮酸的终产物。

丙酮酸羧化酶是哪个途径的关键酶

丙酮酸羧化酶是糖异生途径的关键酶。丙酮酸羧化酶存在于线粒体中,是催化下列不可逆反应的酶。丙酮酸羧化酶EC6.4.1.1.丙酮酸+CO2+ATP+H2O→草酰乙酸+ADP+Pi,ΔGo′=-0.5kcal.广泛存在于动物、霉菌和酵母中,但在植物体和大部分细菌中却不含此酶。在三羧酸循环中,它是供给草酰乙酸的主要补充反应。为一种变构酶,有乙酰CoA时,其活性存在,同时含有生物素作为和CO2反应的酶的辅酶。分子量约65万,有很多亚基。最适pH为4.8。

为什么丙酮酸激酶与丙酮酸生成糖无关

丙酮酸激酶与丙酮酸生成糖无关:由乳酸开始,乳酸被NADH还原为丙酮酸,然后丙酮酸被丙酮酸羧化酶催化生成草酰乙酸,消耗一分子ATP,然后由磷酸烯醇式丙酮酸激酶催化,消耗一分子GTP生成磷酸烯醇式丙酮酸。紧接着就沿糖酵解的可逆反应途径反向,直到生成1,6-2磷酸果糖,在糖酵解中其生成不可逆,所以只能被果糖1,6-2磷酸酶催化,绕过正常反应生成果糖-6-磷酸。果糖-6-磷酸异构化生成葡萄糖-6-磷酸,只差最后一步不可逆反应。再次经葡萄糖-6-磷酸酶催化生成葡萄糖,糖异生到此结束。作用丙酮酸激酶使磷酸烯醇式丙酮酸和ADP变为ATP和丙酮酸,是糖酵解过程中的主要限速酶之一,有M型和L型两种同工酶,M型又有M1及M2亚型。M1分布于心肌、骨骼肌和脑组织;M2分布于脑及肝脏等组织。L型同工酶主要存在于肝、肾及红细胞内。心肌细胞坏死后,PK释放入血,PK的测定可用于诊断心肌梗死。以上内容参考:百度百科-丙酮酸激酶

下列哪一个酶与丙酮酸生成糖无关()

【答案】:B
糖异生途径指从丙酮酸生成葡萄糖的具体反应过程.在糖异生中,丙酮酸转变成磷酸烯醇式丙酮酸由丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶、3-磷酸甘油醛与磷酸二羟丙酮生成1,6二磷酸果糖由醛缩酶催化,1,6二磷酸果糖转变成6-磷酸果糖,由果糖二磷酸酶-1催化.而在糖酵解中,磷酸烯醇式丙酮酸转变成丙酮酸的反应由丙酮酸激酶催化


糖酵解途径的关键酶是

糖酵解途径有3个关键酶:己糖激酶、6-磷酸果糖激酶-1和丙酮酸激酶。糖酵解途径是指细胞在乏氧条件下细胞质中分解葡萄糖生成丙酮酸的过程。基本途径:在细胞液中进行,可分为两个阶段。第一阶段从葡萄糖生成2个磷酸丙糖,第二阶段从磷酸丙糖转化为丙酮酸,是生成ATP的阶段。第一阶段包括4个反应:(1)葡萄糖被磷酸化为6-磷酸葡萄糖。此反应由己糖激酶或葡萄糖激酶催化,消耗一分子ATP;(2)6-磷酸葡萄糖转变为6-磷酸果糖,6-磷酸果糖转变为1,6-二磷酸果糖。此反应由6-磷酸果糖激酶-1催化,消耗一分子ATP;(4)1,6-二磷酸果糖分裂成两个磷酸丙糖。第二阶段由磷酸丙糖通过多步反应生成丙酮酸,在此阶段每分子磷酸丙糖可以生成1分子NADH+H(+)和二分子ATP。ATP由底物水平磷酸化产生。1,3-二磷酸甘油酸转变成3-磷酸甘油酸时产生一分子ATP,磷酸烯醇型丙酮酸转化为丙酮酸时又产生一分子ATP,此反应由丙酮酸激酶催化。丙酮酸接收酵解过程产生的一对氢被还原为乳酸,乳酸是糖酵解的最终产物。

糖酵解中三个限速酶是那几个?

糖酵解中三个限速酶是己糖激酶、6-磷酸果糖激酶-1、丙酮酸激酶。糖酵解途径中有3个不可逆反应,分别由己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶1和丙酮酸激酶催化的反应,它们是糖无氧酵解途径的三个调节点。扩展资料生理意义糖酵解可以把释放的自由能转移到ATP中。糖酵解也是果糖、甘露糖、半乳糖等己糖的共同降解途径。果糖及甘露糖通过己糖激酶的催化作用可转变成果糖-6-磷酸,果糖还可以通过一系列酶的作用转变成3-磷酸甘油醛。半乳糖可以在一些酶催化下转变成1-磷酸葡萄糖。有些先天性代谢疾病是由于上述果糖与半乳糖代谢中的某些酶缺失所致。如缺失磷酸果糖醛缩酶,则果糖-1-磷酸在肝、肠及肾中堆积引起肝肿大及肝肾及肠吸收功能衰退,患这种病的儿童不能服用果糖或蔗糖。

糖酵解的关键酶不包括

糖酵解的关键酶不包括丙酮酸脱氢酶。糖酵解的关键酶1、葡萄糖激酶,催化葡萄糖最终转变为6磷酸葡萄糖。2、6磷酸果糖激酶,催化6磷酸果糖转变为1,6二磷酸果糖。3、丙酮酸激酶,催化磷酸烯醇式丙酮酸和脱氧核糖核昔酸生成烯醇式丙酮酸和核糖核昔酸。糖酵解是指在无氧条件下,葡萄糖在细胞质中被分解成为丙酮酸的过程,期间每分解一分子葡萄糖产生两分子丙酮酸以及两分子,属于糖代谢的一种类型。一共十步反应,包括三种关键酶:己糖激酶、6磷酸果糖激酶、丙酮酸激酶。糖酵解是指将葡萄糖或糖原分解为丙酮酸,ATP和NADH+H的过程,此过程中伴有少量ATP的生成。这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化。在缺氧条件下丙酮酸则可在乳酸脱氢酶的催化下,接受磷酸丙糖脱下的氢,被还原为乳酸。而有氧条件下的糖的氧化分解,称为糖的有氧氧化,丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。

生物化学中,糖酵解过程的重要关键酶是什么?

糖酵解是指将葡萄糖或糖原分解为丙酮酸,ATP和NADH+H﹢的过程,此过程中伴有少量ATP的生成。是体内葡萄糖代谢最主要的途径之一,也是糖、脂肪和氨基酸代谢相联系的途径。糖酵解可分为二个阶段,活化阶段和放能阶段。有一个概念容易与酵解混淆,就是“发酵”。微生物中的发酵大致是指微生物培养,而生化中的发酵是指一种特殊的葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。这就是说,要把中间产生的NADH再氧化成NAD+。不同生物采用的具体反应不同,人体是用丙酮酸氧化NADH,生成乳酸;微生物中可以产生多种多样的产物,如乙醇、乙酸、丙酸、丙酮、丁醇、丁酸、琥珀酸、丁二醇等。标准的酵解过程共有10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;后5步是放能阶段,三碳糖生成丙酮酸,共产生4分子ATP。总过程需10种酶,都在细胞质中,多数需要Mg2+。酵解过程中所有的中间物都是磷酸化的,可防止从细胞膜漏出、保存能量,并有利于与酶结合。酵解的具体反应过程各种教材均有讲解,这里只介绍一些容易忽略的内容。酵解的第一步由己糖激酶(hexokinase,HK,EC 2.7.1.1)催化,可作用于D-葡萄糖、果糖和甘露糖。人体己糖激酶有四种同工酶, 其中HK4对葡萄糖的特异性强,又称葡萄糖激酶(glucokinase,GK)。GK主要分布在肝脏,Km较高(10mM),不受产物6-磷酸葡萄糖的别构抑制,主要用于调控餐后血糖。而其它同工酶用于为肌肉、脑等组织提供能量。详见《己糖激酶的同工酶及其对糖酵解的调控作用》一文。酵解的第二步反应是可逆的,反应方向由两侧的相对浓度控制。磷酸葡萄糖异构酶受磷酸戊糖支路的中间物(如6-磷酸葡萄糖酸)竞争性抑制。戊糖支路通过这种方式抑制酵解和有氧氧化,pH降低使抑制加强,减少酵解,以免组织过酸。催化第三步反应的磷酸果糖激酶(6-phosphofructokinase,PFK,EC2.7.1.11)是酵解的限速酶,所以调节物很多。ATP、柠檬酸、磷酸肌酸、脂肪酸、DPG是负调节物;1,6-二磷酸果糖、2,6-二磷酸果糖、AMP、ADP、磷酸、环AMP等是正调节物。6-磷酸果糖还可以被磷酸果糖激酶-2(PFK-2,EC2.7.1.105)催化,产生2,6-二磷酸果糖。它是PFK最强的别构激活剂,在酵解和异生的协调中起着重要作用。PFK有三种同工酶,A在心肌和骨骼肌中,对磷酸肌酸、柠檬酸和磷酸敏感;B在肝和红细胞中,对DPG敏感;C在脑中,对ATP和磷酸敏感。这种敏感性的差异,不仅因为各种组织中浓度不同,更重要的是其浓度变化幅度不同。例如,大鼠在运动和休息时ATP含量仅差0.8 ug/g肌肉,不能显著改变PFK活力;而磷酸肌酸含量是ATP的3-4倍,并且在肌肉收缩开始后几秒,即从20 mM下降到10~5 mM,所以会显著增加PFK活力。第五步异构化完成之后,一分子葡萄糖转变为2分子3-磷酸甘油醛,消耗了2分子ATP。需要注意的是,原来葡萄糖的3,2,1位和4,5,6位变成了甘油醛的1,2,3位。这一点在分析碳原子去向的题目中会用到。

上一篇:邹继富

下一篇:合肥墙绘