微型光纤光谱仪

时间:2024-07-06 14:51:03编辑:阿星

光纤光谱仪的原理和应用的简介

在九十年代,微电子领域中的多象元光学探测器迅猛发展,如 CCD 阵列、光电二极管( PD )阵列等,使生产低成本扫描仪和 CCD 相机成为可能。美国海洋光学公司的光谱仪使用了同样的 CCD 和光电二极管阵列( PDA )探测器,可以对整个光谱进行快速扫描而不必移动光栅。由于光通信技术对光纤的需求大大增长,从而开发了低损耗的石英光纤。该光纤同样可以用于测量光纤,把被测样品产生的信号光传导到光谱仪的光学平台中。由于光纤的耦合非常容易,所以可以很方便地搭建起由光源、采样附件和光纤光谱仪组成的模块化测量系统。光纤光谱仪的优点在于系统的模块化和灵活性。美国海洋光学公司的微小型光纤光谱仪的测量速度非常快,使得它可以用于在线分析。而且由于它选用低成本的通用探测器,所以光谱仪的成本也大大降低,从而大大扩展了它的应用领域。

光纤光谱仪的功能介绍

由于光谱本身的多级衍射影响,采用滤光片可以降低多级衍射的干扰。和常规光谱仪不同的是,光纤光谱仪是在探测器上镀膜实现,此部分功能在出厂时需要安装就位。同时此镀膜还具有抗反射的功能,提高系统的信噪比。光谱仪的性能主要是由光谱范围、光学分辨率和灵敏度来决定。对以上其中一项参数的变动通常将影响其它的参数的性能。光谱仪主要的挑战不是在制造时使所有的参数指标达到最高,而是使光谱仪的技术指标在这个三维空间选择上满足针对不同应用的性能需求。这一策略使光谱仪能够满足客户以最小的投资获取最大的回报。这个立方体的大小取决于光谱仪所需要达到的技术指标,其大小与光谱仪的复杂程度以及光谱仪产品的价格相关。光谱仪产品应该完全符合客户所要求的技术参数。 光谱范围较小的光谱仪通常能给出详细的光谱信息,相反大范围光谱范围有更宽的视觉范围。因此光谱仪的光谱范围是必须明确指定重要的参数之一。影响光谱范围的因素主要是光栅和探测器,根据不同的要求来选择相应的光栅和探测器。 说起灵敏度,重要的是要区分开光度学中的灵敏度(光谱仪所能探测到的最小信号强度)还是化学计量学中的灵敏度(光谱仪能够测量到的最小吸收率差)。a.光度灵敏度对于如荧光和拉曼等需要高灵敏度光谱仪的应用,我们建议选择采用热电制冷型1024像素二维面阵CCD探测器的SEK热电制冷型光纤光谱仪,而且还要选择探测器聚光透镜、金反射镜、较宽的狭缝(100μm或者更宽),该型号可以采用长积分时间(从7毫秒到15分钟)来提高信号强度,并可以降低噪声和提高动态范围。b.化学计量灵敏度为了能探测出两个幅值很接近的吸收率数值,不但要求探测器的灵敏度高,还要求信噪比高。信噪比最高的探测器是SEK光谱仪中的热电制冷型1024像素二维面阵CCD探测器,信噪比是1000:1。而通过多幅光谱图平均也可以提高信噪比,平均次数的增加,会导致信噪比以平方根的速度提高,比如,100次平均可以10倍提高信噪比,达到10000:1了。 光学分辨率是衡量分光能力的重要参数。如果您需要很高的光学分辨率,我们建议您选择1200线/毫米或者更高线对数的光栅,同时选择窄狭缝和2048或3648像素的CCD探测器。

光纤光谱仪的原理和应用的如何选择合适的光栅

衍射光栅是一种把入射的多色光分解成它所包含的单色光的光学元件。光栅是由一系列等宽等间距的平行凹槽构成的,而这些凹槽是在镀反射膜的基底材料上刻划制成的。按照 凹槽形成方式的不同可以把光栅分成两种:全息光栅和刻划光栅。刻划光栅是 用刻划机上的钻石刻刀在涂薄金属反射表面上机械刻划而成 ;而全息光栅则是由激光束干涉图样和光刻过程形成的。光纤光谱仪中的光栅要由用户指定,并永久安装在光谱仪中。接下来用户就要说明所需要的波长范围。有时光栅的标称可用光谱范围大于照射到探测器上的光谱范围,这时为了覆盖更宽的光谱范围,可选择双通道或三通道光谱仪。这些主通道和从通道可以选择不同的光栅。类似的,双通道或三通道光谱仪也可以使用户在更宽的光谱范围内实现更高的分辨率。在光谱仪介绍部分,对于每种光谱仪型号都有一个光栅选择表。介绍了如何理解这些光栅选择表。光谱仪的光谱范围取决于光栅的起始波长和光栅线对数。波长越长则色散效应越大,光栅所覆盖的波长范围就越小。而整台光谱仪的效率则由光纤的传输效率、光栅和反射镜的效率、探测器及其膜层灵敏度的效率共同决定。*注:取决于光栅的起始波长;波长越长,光栅色散越大,实际光谱范围越小

光纤的发展前景如何

按理论计算:就光纤通信常用波长1.3微米和1.55微米波长窗口的容量至少有25000GHz。自然会想到采用多波长的波分复用技术WDM(WavelengthDivisionMultiplex)。1996年WDM技术取得突破,贝尔实验室发展了WDM技术,美国MCI公司在1997年开通了商用的WDM线路。光纤通信系统的速率从单波长的2.5Gb/s和10Gb/s爆炸性地发展到多波长的Tb/s(1Tb/s=1000Gb/s)传输。当今实验室光系统速率已达10Tb/s,几乎是用之不尽的,所以它的前景辉煌


大家好,谁能介绍一下光纤光谱仪的发展前景?

由于光谱仪的结构特点以及光谱仪广泛的应用领域,在微小光谱仪的研究中可以采用多种方法和多种思路。比如改善AOTF的波长覆盖范围、波长分辨率和通光本领,可以使它能应用于各种光谱化学分析,而用这样的元件可以制成结构简单、性能良好、成本低廉的光谱仪,或者使用分辨率较高的中阶梯光栅,与一般棱镜结合,进行交叉色散,可以得到分辨率很高的二维光谱图,所以可以根据微小光谱仪的本身特点和工作环境要求来进行设计。微加工技术的发展以及MEMS、MOEMS的出现使许多学科技术的研究都朝着微惊讶及微小型化的方向发展,更需要一些特殊条件下(如外星、地下、深海、危险区等)的工作仪器。光谱仪在未来的新世纪必将出现高度智能化和微型化的趋势,微型光谱仪可以说是微型仪器的一种。微型仪器实际上是具有仪器功能的MEMS/MOEMS产品,是MEMES技术的实际应用。微型仪器的核心技术之一是微型传感技术,采用各种新原理、新概念的各类传感器是实现微型仪器的关键和必要条件。现在仪器朝着微小型化、智能化的发展使我们又面临一个新的考验,也是我们发展的一个机遇。
具体可以参考几家比较好的光谱仪制造厂家,如海洋光学,复享仪器等等。


上一篇:光通信网

下一篇:天津光纤入户