sinz

时间:2024-08-03 02:12:33编辑:阿星

sin ax的泰勒展开式是什么?怎么展开啊

sin(sinx)∽x,设sinx=t,则sint~t,所以sint~t~sinx~x,由等价无穷小的传递性,因此泰勒展开为x,也可以直接算,求五次导数,可以解出除了x项以外都是0。例如此时sin(x)的泰勒展开式就是(用角度表示)sin(x)=x*Pi/180-x^3/3!/(Pi/180)^3+...因此必须要增加系数(倍数)显然是一件不够简洁的写法,而数学是主张简洁美的,这样的做法不会被认可。泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

sinx泰勒展开式是什么?

sinx用泰勒公式展开是sinx=x-1/3!x^3+1/5!x^5+o(x ^5)。sinx的泰勒展开式是不固定的,sin(sinx)∽x,设sinx=t,则sint~t,所以sint~t~sinx~x,由等价无穷小的传递性,因此泰勒展开为x,也可以直接算,求五次导数,可以解出除了x项以外都是0。泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。高等数学中的应用在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。(2)应用泰勒公式可以证明区间上的函数等式或不等式。(3)应用泰勒公式可以进行更加精密的近似计算。(4)应用泰勒公式可以求解一些极限。(5)应用泰勒公式可以计算高阶导数的数值。

上一篇:汉江科技学校

下一篇:化妆品过敏的症状