等离子态

时间:2024-08-08 00:23:30编辑:阿星

等离子体是物质的什么态?

等离子体和固体、液体或气体一样,是物质的一种状态。对气体施加足够的能量使之离化成等离子状态。等离子体的“活性”组分包括:离子、电子、活性基团、激发态的核素(亚稳态)、光子等。控制和驾驭这些活性组分聚集后的性能可进行各种各样的表面处理,例如纳米级别的清洁、活化表面的浸润性、化学接枝、涂层沉积等。等离子体的高化学活性用来在不影响基材的情况下改变表面的性能。实际上可以控制这些部分离化的气体所携带的能量,使之含有很低的“热”能。实现的方法是通过把能量与自由电子而不是与更重的离子进行耦合,这样便可以处理对热量敏感的聚合物,例如聚乙烯和聚丙烯。能量是如何与气体耦合的呢?大多数情况下是通过在低压环境下在两个电极间施加电场。这就像荧光灯的工作原理,唯一的区别是不让光发出。我们支配他的化学性能来处理材料的表面。等离子体也可以在大气压力下产生。在过去,大气压等离子体温度太高而不能作为表面处理的工具。最近,改进的技术可以在大气压力下产生低温等离子体,可应用于大多数对温度敏感的聚合物的处理。 等离子清洗/刻蚀机产生等离子体的装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这些离子的活性很高,其能量足以破坏几乎所有的化学键,在任何暴露的表面引起化学反应,不同气体的等离子体具有不同的化学性能,如氧气的等离子体具有很高的氧化性,能氧化光刻胶反应生成气体,从而达到清洗的效果;腐蚀性气体的等离子体具有很好的各向异性,这样就能满足刻蚀的需要。利用等离子处理时会发出辉光,故称之为辉光放电处理。    等离子体清洗的机理,主要是依靠等离子体中活性粒子的“活化作用”达到去除物体表面污渍的目的。就反应机理来看,等离子体清洗通常包括以下过程:无机气体被激发为等离子态;气相物质被吸附在固体表面;被吸附基团与固体表面分子反应生成产物分子;产物分子解析形成气相;反应残余物脱离表面。   等离子体清洗技术的最大特点是不分处理对象的基材类型,均可进行处理,对金属、半导体、氧化物和大多数高分子材料,如聚丙烯、聚脂、聚酰亚胺、聚氯乙烷、环氧、甚至聚四氟乙烯等都能很好地处理,并可实现整体和局部以及复杂结构的清洗。   等离子体清洗还具有以下几个特点:容易采用数控技术,自动化程度高;具有高精度的控制装置,时间控制的精度很高;正确的等离子体清洗不会在表面产生损伤层,表面质量得到保证;由于是在真空中进行,不污染环境,保证清洗表面不被二次污染。   


等离子态的物质有哪些

常用于电离产生等离子体的气体有惰性气体(稀有气体),碱金属蒸汽,氮气,水蒸气,负电性气体比如氧气,四氟化硫,混合气体如空气,氦-空气,氮-氩等。等离子体是指一种准中性的电离气体,整个粒子成电中性,并且还要有集体效应。等离子体基本上都是高温高压的气体,所有的粒子都聚在一起,才能具有集体效应。至于电阻特性,应该是由于等离子体里面的高密度粒子对通过的电子或者电磁波产生影响形成。一般情况下会同时具有实部和虚部,即既有电阻又有电抗。等离子体是波。波是等离子体中最基本的运动形式,等离子体中不稳定性和湍流都是波的性质的不同体现,波的本质是介质中某种扰动模式的时空传播。等离子体是由大量带电粒子组成的一种连续介质,它的行为主要是带电粒子间长程相互作用引起的集体效应确定的。等离子体近场增强是一种利用等离子体表面增强共振现象来增强光的电磁场强度,从而提高光学传感器灵敏度的技术。等离子体表面上,当光源照射时,会激发表面等离子共振现象,引起电磁场的极化;该现象使得电场强度在表面附近高度集中,导致光学信号的增强,从而提高传感器的检测灵敏度。

什么是等离子态?物体共有多少种状态?

气体物质处于高温条件下,原子分子激烈碰撞被电离,或者气体物质被射线照射以后,原子被电离,整个气体含有足够数量的离子和带负电的电子,而且一般情况下正负电荷量几乎处处相等,这种聚集态叫等离子态.
气态、液态、固态(可统称为“常态”)
等离子态
费米子凝聚态
玻色-爱因斯坦凝聚态
(为上为地球上目前能存在或制造的物态,以下只有一些特殊天体上才存在)
超固态
中子态
超子态
反常中子态
黑洞
进一步从物质的内部结构去考虑,物态就远不止这几种了.例如,在固体物质中,有的其内部微观粒子呈周期性、对称性的规则排列,称为结晶态.而另外一些,如玻璃、沥青等物质,常温下虽然也有固定的形状和体积,不能流动,但其内部结构则更像液体,为玻璃态(非晶体).还有一些有机物质,能够流动,又具有某些晶体的光学特性,是介于液态和结晶态之间的状态,称为液晶态,很多物质在极低的温度下,会出现电阻消失的现象,称为超导态;在极低的温度下,某些液体的粘滞性会完全消失,叫做超流态.在巨大的压力下,平时是气体的氢,可以转变为具有金属特性的固态,称为金属氢态.天文学家发现,在宇宙中存在着比超固态密度更大的物质状态,例如组成中子星的中子态,还有密度更高的超子态、反常中子态、黑洞等等.


上一篇:cf搞笑顺口溜

下一篇:韩执意部署萨德