祖冲之

时间:2024-08-21 10:07:06编辑:阿星

祖冲之简介 祖冲之个人简介

1、祖冲之(429年-500年),字文远,范阳郡遒县(今河北省涞水县)人,南北朝时期杰出的数学家、天文学家。

2、祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

3、由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。


祖冲之简介

祖冲之简介   祖冲之简介祖冲之(ZǔChōngzhī ,公元429年—公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。先世迁入江南,祖父掌管土木建筑,父亲学识渊博。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山县东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由 *** 数学家卡西打破。祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅一起圆满地利用“牟合方盖”解决了球体积的计算问题,得到正确的球体积公式。在天文历法方面,祖冲之创制了《大明历》,最早将岁差引进历法;采用了391年加144个闰月的新闰周;首次精密测出交点月日数(27.21223),回归年日数(365.2428)等数据,还发明了用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》。是历史上少有的博学多才的人物。   为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。   祖冲之通过艰苦的努力,他在世界数学史上第一次将圆周率(Л)值计算到小数点后七位,即3.1415926到3.1415927之间。他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”。他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他编制的《大明历》,第一次将“岁差”引进历法。提出在391年中设置144个闫月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家。重新造出早已失传的指南车、千里船等巧妙机械多种。此外,他对音乐也有研究。著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,均早已遗失。


祖冲之在数学上有什么成就?

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".之后发现古率误差太大,圆周率应是"圆径一而周三有余",可是究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,此刻无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家提议把π=叫做"祖率".


祖冲之在数学上的杰出成就是什么?

祖冲之是南北朝时期人,杰出的数学家、科学家。其主要贡献在数学、天文历法和机械3方面。此外,对音乐也有研究。他是历史上少有的博学多才的人物。祖冲之在数学上的杰出成就,是关于圆周率的计算。他在前人成就的基础上,经过反复演算,求出了圆周率更为精确的数值,被外国数学史家称作“祖率”。祖冲之的祖父祖昌,是个很有科学技术知识的人,曾在南朝宋的朝廷里担任过大匠卿,负责主持建筑工程。祖父经常给他讲一些科学家的故事,其中东汉时期大科学家张衡发明地动仪的故事深深打动了祖冲之幼小的心灵。祖冲之常随祖父去建筑工地,晚上,就同农村小孩们一起乘凉、玩耍。天上星星闪烁,农村孩子们却能叫出星星的名称,如牛郎星、织女星以及北斗星等,此时,祖冲之觉得自己实在知道得太少。祖冲之不喜欢读古书。5岁时,父亲教他学《论语》,两个月他也只能背诵10多句。父亲很生气。可是他喜欢数学和天文。一天晚上,他躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对。第二天早上,他就拿了一段妈妈做鞋子用的线绳,跑到村头的路旁等待过往的车辆。一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:“让我用绳子量量您的车轮,行吗?”老人点点头。祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径。量来量去,他总觉得车轮的直径不是“圆周长的三分之一”。祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的。这究竟是为什么呢?这个问题一直在他的脑海里萦绕。他决心要解开这个谜。随着年龄的增长,祖冲之的知识越来越丰富了。他开始研究刘徽的“割圆术”了。祖冲之非常佩服刘徽的科学方法,但刘徽的圆周率只得到正九十六边形的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出正一百九十二边形、正三百八十四边形等,以求得更精确的结果。当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小木棍,然后按类似珠算的方法进行计算。祖冲之在房间地板上画了个直径为一丈的大圆,又在里边做了个正六边形,然后摆开他自己做的许多小木棍开始计算起来。此时,祖冲之的儿子祖暅已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了10多天才算到正九十六边形,结果比刘徽的少0.000002丈。祖暅对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了。”祖冲之却摇摇头说:“要推翻他一定要有科学根据。”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的。祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直至结果完全相同才罢休。祖冲之从正一万二千二百八十八边形,算至正二万四千五百七十六边形,两者相差仅0.0000001。祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3.1415926而小于3.1415927这一结果。这个成绩,使他成为了当时世界上最早把圆周率数值推算到7位数字以上的科学家。直至1000多年后,德国数学家鄂图才得出相同的结果。祖冲之能取得这样的成就,和当时的社会背景有关。他生活在南北朝时期的南朝宋。由于南朝时期社会比较安定,农业和手工业都有显著的进步,经济和文化得到了迅速发展,从而也推动了科学的前进。当时南朝时期出现了一些很有成就的科学家,祖冲之就是其中最杰出的人物之一。祖冲之在数学方面的主要贡献是推算出更准确的圆周率的数值。圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉圆的一切问题,都要使用圆周率来推算。因此,如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我国古代劳动人民在生产实践中求得的最早的圆周率值是“3”,这当然很不精密,但一直被沿用至西汉时期。后来,随着天文、数学等科学的发展,研究圆周率的人越来越多了。西汉末年的刘歆首先抛弃“3”这个不精确的圆周率值,他曾经采用过的圆周率是3.547。东汉时期的张衡也算出圆周率为3.1622。这些数值比起“3”当然有了很大的进步,但是还远远不够精密。至三国末期,数学家刘徽创造了用割圆术来求圆周率的方法,圆周率的研究才获得了重大的进展。不过从当时的数学水平来看,除刘徽的割圆术外,还没有更好的方法。祖冲之把圆的内接正多边形的边数增多至二万四千五百七十六边形时,便恰好可以得出3.1415926<π<3.1415927的结果。祖冲之还确定了圆周率的两个分数形式约率和密率的近似值。约率前人已经用到过,密率是祖冲之发现的。密率是分子分母都在1000以内的分数形式的圆周率最佳近似值。用这两个近似值计算,可以满足一定精度的要求,并且非常简便。祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过度量衡,并用最新的圆周率成果修正古代的量器容积的计算。古代有一种量器叫作“釜”,一般的是1尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。他还重新计算了汉朝刘歆所造的“律嘉量”。这是另一种量器。由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值,为人们的日常生活提供了方便。以后,人们制造量器时就普遍采用了祖冲之的“祖率”数值。祖冲之曾写过《缀术》5卷,汇集了祖冲之父子的数学研究成果,是一部内容极为精彩的数学书,备受人们重视。后来唐代的官办学校的算学科中规定:学员要学《缀术》4年;朝廷举行数学考试时,多从《缀术》中出题。祖冲之在天文历法方面的成就,大都包含在他所编制的《大明历》中。这个历法代表了当时天文和历算方面的最高成就。比如:首次把岁差引进历法,这是我国历法史上的重大进步;定一个回归年为365.24281481日;采用391年置144闰的新闰周,比以往历法采用的19年置7闰的闰周更加精密;精确测得交点月日数为27.21223日,使得准确的日、月食预报成为可能等。在机械制造方面,祖冲之设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等。他不仅仅让失传已久的指南车原貌再现,也发明了能够日行千里的“千里船”,并制造出类似孔明的“木牛流马”运输工具。祖冲之生平著作很多,内容也是多方面的。在数学方面著有《缀术》;天文历法方面有《大明历》及为此写的“驳议”;古代典籍的注释方面有《易义》、《老子义》、《庄子义》、《释论语》、《释孝经》等;文学作品方面有《述异记》,此书在《太平御览》等书中可以看到这部著作的片断。值得一提的是,祖冲之的儿子祖暅,也是一位数学家,他继承他父亲的研究,创立了球体体积的正确算法。他们当时采用的一条原理是:位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖暅原理”。祖暅原理也就是“等积原理”。在天文方面,祖暅也能继承父业。他曾著《天文录》30卷,《天文录经要诀》1卷,可惜这些书都失传了。祖冲之编制的《大明历》,梁武帝天监初年,祖暅又重新加以修订,才被正式采用。他还制造过记时用的漏壶记时很准确,并且写过一部《漏刻经》。祖冲之

祖冲之故事50字(祖冲之故事)

您好,现在我来为大家解答以上的问题。祖冲之故事50字,祖冲之故事相信很多小伙伴还不知道,现在让我们一起来看看吧!1、祖冲之的故事:祖... 您好,现在我来为大家解答以上的问题。祖冲之故事50字,祖冲之故事相信很多小伙伴还不知道,现在让我们一起来看看吧! 1、祖冲之的故事:祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。 2、他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。 3、直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。 4、由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。 5、其主要著作有《安边论》《缀术》《述异记》《历议》等。 6、扩展资料:祖冲之曾在著作中自述说,从很小的时候起便“专功数术,搜烁古今”。 7、他把从上古时起直至他生活的时代止的各种文献、记录、资料,几乎全都搜罗来进行考察。 8、同时,主张决不“虚推古人”,决不把自己束缚在古人陈腐的错误结论之中,并且亲自进行精密的测量和仔细的推算。 9、像他自己所说的那样,每每“亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策”。 10、由于祖冲之博学多才的名声,被南朝宋孝武帝派至当时朝廷的学术研究机关华林学省做研究工作,后来又到总明观任职。 11、当时的总明观是全国最高的科研学术机构,相当于现在的中国科学院。 12、总明观内分设文、史、儒、道、阴阳5门学科,实行分科教授制度,请来各地有名望的学者任教,祖冲之就是其一。 13、在这里,祖冲之接触了大量国家藏书,包括天文、历法、术算方面的书籍,具备了借鉴与拓展的先决条件。 14、祖冲之在我国天文学史上第一次提出,月亮相继两次通过黄道、白道的同一交点的时间(即“交点月”)长度为27.2123日,与现今推算值仅相差十万分之一日,即不到1秒,由于日食、月食(统称交食),都发生在黄白交点附近,所以祖冲之的交点月长度对于日月食预报具有十分重要的意义。 15、推算出交点月的日数以后,就更能准确地推算出日蚀或月蚀发生的时间。 16、祖冲之在他制订的《大明历》中,应用交点月推算出来的日、月蚀时间比过去准确,和实际出现日、月蚀的时间都很接近。 17、参考资料来源:百度百科——祖冲之。

祖冲之的故事

祖冲之的故事4篇   祖冲之的故事 篇1   祖冲之出生在公元429年,正当南北朝刘宋王朝时代。他是个伟大的数学家、天文学家和物理学家,有许多卓越的成就,其中之一就是圆周率的计算。   圆周率就是圆周的长度和直径的长度的比。这是一个无限不循环的小数,也就是说它是个没完没了的小数,各位数字的变化又没有规律。通常在计算的时候,我们把圆周率定为31416,这个数字实际上比圆周率稍微大一点。祖冲之在一千五百年以前就确定,圆周率在31415926至31414927之间,比31416精确得多。在他之后一千年,阿拉伯数学家才打破了这个精确程度的记录。   计算圆周率是一件很不容易的事。我们知道,在一个圆里内接正多边形,计算这个正多边形的总的边长,就可以得到圆周的近似值。正多边形的边数越多,总的长跟圆周就越是接近。祖冲之必须从圆的内接正六边形开始,先算内接正十二边形的边长,再算出内接正二十四边形的边长,再算内接正四   十八形的边长……边数一倍又一倍地增加,一共翻十一翻,直到算出了内接正一万二千二百八十边形的边长,才能得到这样精密的圆周率。   内接正多边形的边数翻十翻,看起来好像还简单,其实不然。边数每翻一翻,至少要进行七次运算,其中除了加和减,有两次是乘方、两次是开方。祖冲之算出来的结果有六位小数点,估计他在运算的过程中,小数至少要保留十二位。加和减还好办,十二位小数的乘方、尤其是开方,运算起来极其麻烦。祖冲之要是没有熟练的技巧和坚强的毅力,是无法完成这上百次的繁难复杂的运算的。   在祖冲之以前,已经有人提出圆周率跟π相近似。祖冲之把π叫做“疏率”,提出了另一个圆周率的近似值π,作为“密率”,因为它更加精密,跟圆周率更相接近了。过了一千年,德国人奥托和荷兰人安托尼兹才先后提出π这个圆周率的近似值,欧洲人当时不知道祖冲之已经提出了“密率”,在他们写的数学史上,把它叫做“安托尼兹”。日本数学家主张把π称为“祖率”,这是十分公允的。   祖冲之计算出圆周率后名声响了起来,结果被宋明帝派到一个落后的穷县当县令。祖冲之上任后经常外出观察,一次他看到农民用脚踏碓舂米的情形,觉得既累又慢,便立即与老农商量,请来木匠、石匠,做了一个以立式水轮为动力的水碓。   试车成功了,村民们在一旁欢呼雀跃。祖冲之却在一旁思考:如果能做个水碓磨,既能舂米又能磨面不是更好吗?经过反复实践,改进,水碓磨车终于试制成功了,这其中包含着力水、杠杆、凸轮的原理。   后来,祖冲之又被调到京城任职。当时的达官贵人为出门显示排场与威风,纷纷指令手下工匠制造指南车。祖冲之经过精心研究和设计,再利用精确圆周率计算,在车前做了个铜铸齿轮盘,随便车子怎么转,车上的铜人总是指着南方。   祖冲之就是这样不断地进行科学探索。他的科学成就,在我国科学技术发展史上,将永远放射光芒。他的刻苦学习、认真钻研、勇于创造和坚持真理的精神,是值得我们学习的。   边读边想:祖冲之是谁?他最早计算出了什么,比其他国家早了多少年,他涉猎了哪几个科学领域,他有哪方面是值得我们学习的?   祖冲之的故事 篇2   导读:祖冲之,(公元429年4月20日—公元500年)汉族人,字文远。祖籍河北范阳遒县(今河北涞水县),[1]是我国南北朝时期杰出的数学家、科学家。他创立《大明历》并且把圆周率推算到小数点后七位   从宋孝武帝即位之后,宋王朝很快就衰落了。在这个时期,却出了一个杰出的科学家祖冲之。   祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的`家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。   宋孝武帝听到他的名气,派他到一个专门研究学术的官署华林学省工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。   我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做大明历(大明是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。   祖冲之的故事 篇3   祖冲之( 公元429年4月20日─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。   祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。 名人故事   祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。   宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。   我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。   公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说: “你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。名人故事   尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。   祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。   祖冲之的故事 篇4   《数理化通俗演义》中记录了许多名人的故事,作者梁衡用通俗易懂的语言将许多遥远的历史人物和他们的科学成就再现在我们眼前。   祖冲之,南北朝时期杰出的数学家、天文学家,他得出的圆周率精确值在当时的世界遥遥领先。   祖冲之是在为中国古代数学名著《九章算术》做注的时候遭遇到圆周率这个难题的,这个问题当时已经困扰中国数学学者四百余年。   祖冲之大量阅读了前人留下对《九章算术》注解,从刘徽的割圆术中获得灵感,将一个圆内接上正多边形,不断地割下去,求出多边形的周长,便能无限接近圆周率。   祖冲之和他的儿子祖暅在地上画了一个直径为一丈的打算,将圆割成六等分,然后依次内接12边形、24边形、48边形……父子俩把地上的大圆切割到了24576份,这时的圆周率已经精确到了3.14159261。祖冲之知道这样不断的割下去,内接多边形的周长还会增加,会更接近于圆周,但这已经是小数点后的第8位,再增加也不会超过0。00000001丈,所以圆周率必然在3.1415926和3.1415927之间,他首次提出了圆周率在“上下二限”之间这个提法,这个圆周率的精确值直到1000年后才被阿拉伯数学家超过。   圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。祖冲之对圆周率数值的精确推算,对于中国乃至世界都是一个重大贡献,有着积极的现实意义。

上一篇:私域

下一篇:性艺术