初中数学几何公式

时间:2024-09-15 21:31:36编辑:阿星

初中常用三角函数公式。

以反正弦三角函数计算公式为例:1.arcsinx+arcsiny,arcsinx+arcsiny=arcsin(x√(1-y2)+y√(1-x2)),xy≤0或x2+y2≤1,arcsinx+arcsiny=π-arcsin(x√(1-y2)+y√(1-x2)),x>0且y>0且x2+y2>1arcsinx+arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y<0且x2+y2>1。2.arcsinx-arcsiny,arcsinxarcsiny=arcsin(x√(1-y2)-y√(1-x2)),xy≤0或x2+y2≤1arcsinx-arcsiny=π-arcsin(x√(1-y2)-y√(1-x2)),x>0且y<0且x2+y2>1。arcsinx-arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y>0且x2+y2>1反正弦三角函数计算公式:1.arcsinx+arcsinyarcsinx+arcsiny=arcsin(x√(1-y2)+y√(1-x2)),xy≤0或x2+y2≤1。arcsinx+arcsiny=π-arcsin(x√(1-y2)+y√(1-x2)),x>0且y>0且x2+y2>1,arcsinx+arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y<0且x2+y2>1。


急求初一数学简单几何证明题(带图)

1.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADE。当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论。解: 当B在BC的中点时四边形CDEF为平行四边形,且∠DEF=30°证明;在△ADC和△BFC中BF=DC,BC=AC,∠B=∠ACD∴△ADC△≌BFC∴AD=FC,∠DAC=∠BCF=30°∵△AED是等边三角形∴ED=FC,∵∠EAB=∠ BAD=60°∴AD垂直平分ED∴∠BDE=∠DCF=30°∴ED‖FC∴CDEF是平行四边形且∠DEF=30°

初中三角函数和角公式

三角函数和角公式又称三角函数的加法定理,是几个角的和的三角函数通过其中各个角的三角函数来表示的关系。下面总结了三角函数的和角公式,供大家参考。 三角函数和角公式 sin(A+B)=sinAcosB+cosAsinB cos(A+B)=cosAcosB-sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) 三角函数差角公式 sin(A-B)=sinAcosB-cossinB cos(A-B)=cosAcosB+sinAsinB tan(A-B)=(tanA-tanB)/(1+tanAtanB) 和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式 sinα·cosβ=(1/2)[sin(αβ)sin(α-β)] cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)] cosα·cosβ=(1/2)[cos(αβ)cos(α-β)] sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)] sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2] sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2] cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2] 同角三角函数的关系 平方关系 sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系 sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα 倒数关系 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商数关系 sina/cosa=tana cosa/sina=cota 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边:sina=y/r 余弦等于角A的邻边比斜边:cosa=x/r 正切等于对边比邻边:tana=y/x

初中数学竞赛的公式和定理

1、正弦定理:对于△ABC,三边分别为a、b、c,则有:a/sinA=b/sinB=c/sinC=2R (R为其外接圆半径)
2、余弦定理:对于△ABC,三边分别为a、b、c,则有:a*2=b*2+c*2-2bccosA b*2=a*2+c*2-2accosB c*2=b*2+a*2-2bacosB
3、面积公式:
S=1/2absinC=1/2acsinB=1/2bcsinA=abc/(4R) (a。b、c分别为三角形的三边,A为边b、c的夹角,其他类似;R为其外接圆半径)
海伦公式:设三角形三边为a、b、c,p=1/2(a+b+c) 则面积S=√[p(p-a)(p-b)(p-c)]
4、射影定理
5、相交弦定理
6、对于Rt△,斜边c,直角边a、b,内切圆半径r,则有:r=(a+b+c)/2
7、△三边中线的交点(重心)分中线为两段,这两段的长度之比为2:1
8、实在太多,不能一一列举。以上常见、常用,而经常被忽视。


初中数学竞赛,要用到的定理或公式?

1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。


上一篇:整容范冰冰

下一篇:没有了