边界元法的基础
边界元法是基于控制微分方程的基本解来建立相应的边界积分方程,再结合边界的剖分而得到的离散算式。Jaswon和Symm于1963年用间接边界元法求解了位势问题;Rizzo[3]于1967年用直接边界元法求解了二维线弹性问题;Cruse[4]于1969年将此法推广到三维弹性力学问题。1978年,Brebbia用加权余量法推导出了边界积分方程,他指出加权余量法是最普遍的数值方法,如果以Kelvin解作为加权函数,从加权余量法中导出的将是边界积分方程——边界元法,从而初步形成了边界元法的理论体系,标志着边界元法进入系统性研究时期。
边界元法的介绍
边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点。但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。