原子吸收法

时间:2024-10-03 09:01:52编辑:阿星

简述原子吸收光谱法基本原理

原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。

原子吸收分析法的原理是什么?

  原子吸收的是从空心阴极灯打来的光,一个灯对应一种元素。所以原子吸收只能一次测一种元素,换个灯再测另一种。

  之所以要这么干,只是因为现在的科技,做不出连续光谱的强光源。现在的连续光源一般是钨灯(可见光谱)和氘灯(紫外光谱),用于分子吸收是足够了。这些连续光源远远达不到把足够的气化后的原子激发到激发态的能量——也就是说,升级的原子浓度不够。

  空心阴极灯(hollow cathode lamp,HCL)是一种特殊形式的低压气体放电光源,放电集中于阴极空腔内。当在两极之间施加200V-500V电压时[3] ,便产生辉光放电。在电场作用下,电子在飞向阳极的途中,与载气原子碰撞并使之电离,放出二次电子,使电子与正离子数目增加,以维持放电。正离子从电场获得动能。如果正离子的动能足以克服金属阴极表面的晶格能,当其撞击在阴极表面时,就可以将原子从晶格中溅射出来。除溅射作用之外,阴极受热也要导致阴极表面元素的热蒸发。溅射与蒸发出来的原子进入空腔内,再与电子、原子、离子等发生第二类碰撞而受到激发,发射出相应元素的特征的共振辐射。与此同时,HCL所发射的谱线中还包含了内充气、阴极材料和杂质元素等谱线。

  因为灯内填充气体压力低,压力变宽很小;阴极温度较低,热变宽也很小;同时,因为气体密度低,自吸变宽也不存在。[3] HCL基本满足发射谱线的半宽度窄、谱线强度大且稳定、谱线背景小、操作方便和经久耐用等锐线光源的基本要求。并且,当采用较大的灯电流时,HCL所发射谱线半宽度变宽和谱线强度增高,此时检测器的负高压降低,吸光度读数稳定。

  由Lamber-Beer 定律:
I0和I分别表示在Δνa,入射光和透射光的强度,
将I=I0e-Kvb代入 上式于是
采用锐线光源进行测量,则Δνe<Δνa ,由图可见,
在辐射线宽度范围内,Kν可近似认为不变,并近似
等于峰值时的吸收系数K0,则
在原子吸收中,谱线变宽主要受多普勒效应影响,
则:代入上式,得式表明:当使用锐线光源时,吸光度 A 与单位体
积原子蒸气中待测元素的基态原子数 N0 成正比。
上式的前提条件:
(1) Δνe<Δνa ;
(2) 辐射线与吸收线的中心频率一致。这就是为
什么要使用一个与待测元素同种元素制成空心阴极
灯的原因。


原子吸收光谱法与分光光度法有何异同点

一、相同之处:1、两种方法均依据样品对入射光的吸收来进行测量的。即经处理后的样品,吸收来自光源发射的某一特征谱线,经过分离后,将剩余的特征谱线进行光电转换,经过记录器记录吸收强度的大小来测定物质含量。2、这两种方法都遵守朗伯比尔定律。3、两种方法均由光源、单色器、吸收池、检测器这四大部分组成。二、不同之处:1、吸收机理不同原子吸收观察的是构成物质的元素中的电子在原子轨道中的跃迁,属于原子吸收;可见分光光度计采用低杂散光,高分辨率的单光束单色器,保证了波长准确度、波长重复性和更高的分辨率。2、单色器与吸收器的位置不同在原子吸收光谱仪中,原子化器的使用相当于吸收池,它的位置在单色器之前。分光光度计中吸收池在单色器之后。可见分光光度计量程为320nm-1100nm,能满足不同物质的测试。3、所需光源不同原子吸收光谱是窄宽带原子吸收光谱,所使用的光源必须是锐线光源,在测量是,必须将样品原子化,转化成基态原子。可见分光光度计通常采用钨灯或卤钨灯。扩展资料参原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是由待测元素灯发出的特征谱线通过供试品经原子化产生的原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。参考资料来源:百度百科—原子吸收分光光度法参考资料来源:百度百科—可见分光光度计

上一篇:氢氧化钠和氢氧化铝

下一篇:没有了