在磷脂酰肌醇信号通路中胞内信号的作用是如何被解除的?
磷脂酰肌醇途径是G蛋白偶联受体的信号转导通路中的一种途径,在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为“双信使系统”(double messenger system)。
IP3信号的终止是通过去磷酸化形成IP2,或被磷酸化形成IP4。Ca2+由质膜上的Ca2+泵和Na+-Ca2+交换器抽出细胞,或由内质网膜上的钙泵抽进内质网
DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,用来维持PKC的长期效应。
三磷酸磷脂酰肌醇由什么产生
三磷酸磷脂酰肌醇(Phosphatidylinositol 3-phosphate,PI3P)是一种重要的细胞膜成分和信号分子,在许多生物学过程中发挥着关键作用。它通常由细胞内的磷脂类前体合成而来。具体来说,PI3P的合成需要经历以下几个步骤:1. 磷脂酰肌醇(phosphatidylinositol, PI)在细胞质侧被磷脂肌醇-3激酶(PI3K)催化下进行第三位磷酸化反应,生成PI3P。2. PI3K是一个重要的信号转导分子,在响应外界刺激时会被活化,并开始向下游传递信号。总之,PI3P主要由细胞内的PI通过特定的代谢途径产生。
磷脂酰肌醇信号通路是什么?
磷脂酰肌醇途径
是G蛋白偶联受体的信号转导通路中的一种途径,在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号(图8-21),这一信号系统又称为“双信使系统”(double messenger system)。
IP3与内质网上的IP3配体门钙通道结合,开启钙通道,使胞内Ca2+浓度升高。激活各类依赖钙离子的蛋白。用Ca2+载体离子霉素(ionomycin)处理细胞会产生类似的结果(图8-22)。
DG结合于质膜上,可活化与质膜结合的蛋白激酶C(Protein Kinase C,PKC)。PKC以非活性形式分布于细胞溶质中,当细胞接受刺激,产生IP3,使Ca2+浓度升高,PKC便转位到质膜内表面,被DG活化(图8-22),PKC可以使蛋白质的丝氨酸/苏氨酸残基磷酸化是不同的细胞产生不同的反应,如细胞分泌、肌肉收缩、细胞增殖和分化等。DG的作用可用佛波醇酯(phorbol ester)模拟。
Ca2+活化各种Ca2+结合蛋白引起细胞反应,钙调素(calmodulin,CaM)由单一肽链构成,具有四个钙离子结合部位。结合钙离子发生构象改变,可激活钙调素依赖性激酶(CaM-Kinase)。细胞对Ca2+的反应取决于细胞内钙结合蛋白和钙调素依赖性激酶的种类。如:在哺乳类脑神经元突触处钙调素依赖性激酶Ⅱ十分丰富,与记忆形成有关。该蛋白发生点突变的小鼠表现出明显的记忆无能。
IP3信号的终止是通过去磷酸化形成IP2,或被磷酸化形成IP4。Ca2+由质膜上的Ca2+泵和Na+-Ca2+交换器将抽出细胞,或由内质网膜上的钙泵抽进内质网
DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,用来维持PKC的长期效应。
首先由激活的SrcPrK和ZAP-70通过LAT使膜结合的磷脂酶C(PLC)分子丁链上的酪氨酸残基发生磷酸化。磷酸化的PLC—γ发挥酶活性,使底物二磷酸磷脂酰肌醇(PIP2)水解成两个成分:三磷酸肌醇(1P3)和二酰甘油(DAG)。IP3可迅速地从膜内侧向胞质溶胶中扩散,一方面打开细胞膜上的钙通道使Ca2+进入细胞内,同时开启细胞内钙池(内质网)增加Ca2+—的释放,协同提高胞内游离钙的浓度。胞质Ca2+含量的上升,激活一种称为钙调蛋白(camodulin)的Ca2+结合蛋白,后者可调节其他酶类的活性,并最终导致钙调磷酸酶的激活。
T细胞抗原激活信号转导磷脂酰肌醇途径的启动
钙调磷酸酶是一种丝、苏氨酸磷酸酶而不是PTK。另一方面,与胞膜内侧相联的DAG则直接激活PKC。后面熔会捍到,钙调磷酸酶和PKC主要分别活化两种重要的转录因子NF—AT和NF—cB。因而在这一条信号转导的下游通路中,实际上再一分为二,形成钙调磷酸酶参与的途径。和PKC介导的途径。由于一个PLCγ分子可以产生很多的IP2和DAG,这就放大了传人的抗原识别信号.并保证其转导的有效性。