百度自然语言处理

时间:2024-11-09 04:21:40编辑:阿星

自然语言处理包括哪些

1.句法语义分析:对于给定的句子,进行分词、词性标记、命名实体识别和链接、句法分析、语义角色识别和多义词消歧。2.信息抽取:从给定文本中抽取重要的信息,比如,时间、地点、人物、事件、原因、结果、数字、日期、货币、专有名词等等。通俗说来,就是要了解谁在什么时候、什么原因、对谁、做了什么事、有什么结果。涉及到实体识别、时间抽取、因果关系抽取等关键技术。3.文本挖掘(或者文本数据挖掘):包括文本聚类、分类、信息抽取、摘要、情感分析以及对挖掘的信息和知识的可视化、交互式的表达界面。目前主流的技术都是基于统计机器学习的。4.机器翻译:把输入的源语言文本通过自动翻译获得另外一种语言的文本。根据输入媒介不同,可以细分为文本翻译、语音翻译、手语翻译、图形翻译等。机器翻译从最早的基于规则的方法到二十年前的基于统计的方法,再到今天的基于神经网络(编码-解码)的方法,逐渐形成了一套比较严谨的方法体系。5.信息检索:对大规模的文档进行索引。可简单对文档中的词汇,赋之以不同的权重来建立索引,也可利用1,2,3的技术来建立更加深层的索引。在查询的时候,对输入的查询表达式比如一个检索词或者一个句子进行分析,然后在索引里面查找匹配的候选文档,再根据一个排序机制把候选文档排序,最后输出排序得分最高的文档。6.问答系统: 对一个自然语言表达的问题,由问答系统给出一个精准的答案。需要对自然语言查询语句进行某种程度的语义分析,包括实体链接、关系识别,形成逻辑表达式,然后到知识库中查找可能的候选答案并通过一个排序机制找出最佳的答案。7.对话系统:系统通过一系列的对话,跟用户进行聊天、回答、完成某一项任务。涉及到用户意图理解、通用聊天引擎、问答引擎、对话管理等技术。此外,为了体现上下文相关,要具备多轮对话能力。同时,为了体现个性化,要开发用户画像以及基于用户画像的个性化回复。随着深度学习在图像识别、语音识别领域的大放异彩,人们对深度学习在NLP的价值也寄予厚望。再加上AlphaGo的成功,人工智能的研究和应用变得炙手可热。自然语言处理作为人工智能领域的认知智能,成为目前大家关注的焦点。很多企业都在进入自然语言领域,寄望未来在人工智能方向大展身手。自然语言处理(简称NLP),是研究计算机处理人类语言的一门技术。

自然语言处理技术有哪些

自然语言处理技术有标记化、删除停止词、提取主干、单词嵌入、词频-逆文档频率、主题建模、情感分析。1、标记化(Tokenization)标记化指的是将文本切分为句子或单词,在此过程中,我们也会丢弃标点符号及多余的符号。这个步骤并非看起来那么简单。举个例子:纽约(New York)一词被拆成了两个标记,但纽约是个代名词,在我们的分析中可能会很重要,因此最好只保留一个标记。在这个步骤中要注意这一点。标记化的好处在于,会将文本转化为更易于转成原始数字的格式,更合适实际处理。这也是文本数据分析显而易见的第一步。2、删除停止词(Stop Words Removal)在标记化之后,下一步自然是删除停止词。这一步的目标与上一步类似,也是将文本数据转化为更容易处理的格式。这一步会删除英语中常见的介词,如“and”、“the”、“a”等。之后在分析数据时,我们就能消除干扰,专注于具有实际意义的单词了。通过比对定义列表中的单词来执行停止词的删除非常轻松。要注意的重要问题是:并没有普天皆适的停止词列表。因此这个列表一般是从零开始创建,并针对所要处理的应用执行了定制。3、提取主干(Stemming)清理文本数据的另一个技术就是提取主干。这种方法是将单词还原为词根形式,目的是将因上下文拼写略有不同,但含义相同的单词缩减为相同的标记来统一处理。例如:考虑在句子中使用单词“cook”的情况。cook的所有形式含义都基本相同,因此理论上,在分析时我们可以将其映射到同一个标记上。在本例中,我们将cook、cooks、cooked和cooking全部标记为“cook”,这将大大简化我们对文本数据的进一步分析。4、单词嵌入(Word Embeddings)从上面三个步骤中,我们已经将数据清理完毕,现在可以将其转化为可用于实际处理的格式。单词嵌入是一种将单词以数字表达的方式,这样一来,具有相似含义的单词表达也会相似。如今的单词嵌入是将单个单词表示为预定义向量空间中的实值向量。所有单词的向量长度相同,只是值有差异。两个单词的向量之间的距离代表着其语义的接近程度。举个例子:单词“cook”(烹饪)和“bake”(烘焙)的向量就非常接近,但单词“football”(足球)和“bake”(烘焙)的向量则完全不同。有一种创建单词嵌入的常见方法被称为GloVe,它代表着“全局向量”。GloVe捕获文本语料库的全局统计信息和局部统计信息,以创建单词向量。GloVe使用了所谓的共现矩阵(co-occurrence matrix)。共现矩阵表示每对单词在语料库里一起出现的频率。5、词频-逆文档频率(Term Frequency-Inverse Document Frequency,TF-IDF)术语“词频-逆文档频率”(常被称为TF-IDF)是一种加权因子,经常在诸如信息检索及文本挖掘类的应用中使用。TF-IDF会使用统计数据来衡量某个单词对特定文档的重要程度。TF-IDF可以达到完美平衡,并考虑到目标单词的本地与全局统计水平。在文档中出现越频繁的单词,其权重也越高,不过前提是这个单词在整个文档中出现并不频繁。由于其强大程度,TF-IDF技术通常被搜索引擎用在指定关键字输入时,评判某文档相关性的评分与排名上。在数据科学中,我们可以通过这种技术,了解文本数据中哪些单词和相关信息更为重要。6、主题建模(Topic Modeling)在自然语言处理中,主题建模是从文本数据或文档的集合中提取主要话题的过程。本质来讲,由于我们将大量文本数据缩减为数量较少的主题,这是一种降维形式。主题建模在许多数据科学场景中都很有用。7、情感分析(Sentiment Analysis)情感分析是一种自然语言分析技术,旨在识别与提取文本数据中的主观信息。与主题建模类似,情感分析可以将非结构化的文本转为嵌入在数据中的信息基本摘要。大多情感分析技术都属于以下两个类别之一:基于规则和机器学习的方法。基于规则的方法需要根据简单的步骤来获得结果。在进行了一些类似标记化、停止词消除、主干提取等预处理步骤后,基于规则的方法可能会遵从以下步骤:(1)对于不同的情感,定义单词列表。例如,如果我们打算定义某个段落是消极的还是积极的,可能要为负面情感定义“坏的”和“可怕的”等单词,为正面情感定义“棒极了”和“惊人的”等单词。(2)浏览文本,分别计算正面与负面情感单词的数量。(3)如果标记为正面情感的单词数量比负面的多,则文本情绪是积极的,反之亦然。基于规则的方法在情感分析用于获取大致含义时效果很好。但是,如今最先进的系统通常会使用深度学习,或者至少经典的机器学习技术让整个过程自动化。通过深度学习技术,将情感分析按照分类问题来建模。将文本数据编码到一个嵌入空间中(与上述的单词嵌入类似),这是功能提取的一种形式。之后将这些功能传递到分类模型,对文本情绪进行分类。

上一篇:阿花花酱

下一篇:没有了