笛卡尔积、等值连接、自然连接三者有什么区别?
区别:\x0d\x0a 笛卡尔积对两个关系 R 和 S 进行操作,产生的关系中元组个数为两个关系中元组个 数之积。等值联接则是在笛卡尔积的结果上再进行选择操作,挑选关系第 i 个分量与第(r+j) 个分量值相等的元组;自然连接则是在等值联接(以公共属性值相等为条件)的基础上再行投 影操作,去掉 S 中的公共属性列,当两个关系没有公共属性时,自然连接就转化成笛卡尔 积。\x0d\x0a1、自然连接一定是等值连接,但等值连接不一定是自然连接。\x0d\x0a2、等值连接要求相等的分量,不一定是公共属性;而自然连接要求相等的分量必须是公共属性。\x0d\x0a3、等值连接不把重复的属性除去;而自然连接要把重复的属性除去。\x0d\x0a笛卡尔积:\x0d\x0a 在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,表示为X × Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员。\x0d\x0a 假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。\x0d\x0a等值连接:\x0d\x0a 等值连接是关系运算-连接运算的一种常用的连接方式。是条件连接(或称θ连接)在连接运算符为“=”号时(即θ=0时)的一个特例。\x0d\x0a自然连接:\x0d\x0a 自然连接(Natural join)是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性组,并且在结果中把重复的属性列去掉。而等值连接并不去掉重复的属性列。
笛卡尔积、等值连接、自然连接三者有什么区别
自然连接一定是等值连接,但等值连接不一定是自然连接。等值连接要求相等的分量,不一定是公共属性;而自然连接要求相等的分量必须是公共属性。内连接分:等值连接 不等值连接 自然连接外连接分:左外连接 右外连接交叉连接: cross join 笛卡尔积 笛卡尔积:在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,表示为X × Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员。假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。等值连接:是关系运算-连接运算的一种常用的连接方式。是条件连接(或称θ连接)在连接运算符为“=”号时(即θ=0时)的一个特例。自然连接(Natural join)是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性组,并且在结果中把重复的属性列去掉。而等值连接并不去掉重复的属性列。