运营数据分析能力包含哪些?
1、流量运营:多维度分析,优化渠道流量运营主要解决的是用户从哪里来的问题。过去粗放式的流量运营,仅仅关注PV、UV等虚荣指标,这是远远不够的。在网站流量分析中,主要包括访问来源、流量入口(落地页)、广告(搜索词)等角度。2、用户运营:精细化运营,提高留存如果说流量运营解决的是用户从哪里来的问题,那么用户运营就是建立和维护与用户的关系。3、产品运营:用数据来分析和监控功能产品运营是一个非常大的话题,很多运营和产品都是围绕产品来做的;监测异常指标,发现用户对你产品的“怒点”;通过留存曲线检验新功能的效果。4、内容运营:精准分析每一篇文章的效果在做内容运营之前,需要明白你的内容是作为一个产品(如知乎日报)出来,还是产品的一个辅助功能。只有明白自己的定位,才能清晰目标。为了扩大内容运营的效果,我们需要对用户的需求进行分析,例如用户感兴趣的内容、内容阅读和传播的比例等。
什么的大数据运营?
这两年大数据行业新提出了一个概念,叫大数据运营,所谓的BigData Operation,目前在各个行业中均处在蓬勃发展的阶段,就笔者来看,BDO代表了一种大数据的未来方向,以笔者所从事的网络游戏行业来看,具有比较大的发展空间,下面科多大数据来给大家做个简单介绍。1、前世今生从大数据进入游戏行业以来,大概经历了几个阶段数据仓库和数据集成阶段,以mysql、oracle 为代表的关系型数据库作为数据集成工具,以手动sql查询作为主要的产出报表等BI、可视化工具阶段,以水晶报表、BO、自主开发系统(例如php+mysql)等可视化数据平台为主要产出数据挖掘建模,数据库营销阶段,该阶段主要利用SAS+Oracle,R+Hadoop等软件系统进行深度数据挖掘建模,主要是从传统数据挖掘的方法论(如用户细分、流失预警、商品推荐等)出发,去套用游戏的各个模块和运营活动,产出多为模型、分析报告、业务建议等大数据运营(BDO)阶段,同样基于数据库营销理论和传统数据挖掘方法论,但同数据挖掘阶段的根本性区别在于,BDO阶段更依赖于本身游戏运营的需求和痛点,从游戏运营的各个环节上,寻求大数据的介入,然后才是考虑需要大数据的××技术,××模型,最终的产出其实是运营的活动、版本的更新等等,大数据以一种潜移默化的方式去影响和引导运营、研发的决策。2、BDO的主要特点大数据运营(BDO),和之前的数据挖掘不同,着力点并不在大数据,而是运营上,大数据仅仅是工具和途径:相比于传统的数据挖掘和分析,BDO所强调的是以业务为主线和出发点,大数据部门并不仅是在外部运行的所谓的“支持部门”,而更多的是和业务紧密联系在一起的“半业务部门”,共同推进业务目标的实现。3、游戏行业的实践具体到笔者所在的游戏行业,大数据运营(BDO)主要实现方式:其中基础支撑和可视化监控,是常见的基本大数据应用,运营活动支撑,包含了常规的活动效果分析和反馈、数据库营销,还有活动的策划建议(从运营的角度和数据的验证上看活动该如何做,目前的活动都是需要大数据分析师一起讨论同意后才上线);游戏设计支撑,包含了常规的版本和功能的效果分析、反馈(大数据分析师指出问题所在,并给出改进建议),而且在游戏的研发和持续更新阶段,对于功能的策划和数值的配平等,均依据大数据分析师给出的数据参考。从这里看出,大数据运营(BDO)不仅包含传统的数据收集和可视化、数据库营销等,而且逐渐的脱离了最初的数据驱动原则,而是以企业整体目标(比如游戏KPI的完成)为导向,以运营为驱动,涵盖运营的各个方面,以大数据为重要依据,以大数据分析结果为评判标准,构建企业的“数据运营”的文化。供参考。
运营数据分析怎么做?
1、明确分析的目的和思路运营是靠目标驱动,做事情带有很强的目的性,同样地,在数据分析方面也同样遵循这个原则。对数据进行分析,最终的目的是什么?我想要解决什么样的问题。2、数据收集运营数据收集,越详细越好,所以在要求前期进行数据统计的时候就需要有关大局观,将后期数据分析可能会用到的数据尽可能多地收集起来,以方便后期进行数据分析。3、数据处理对收集到的数据进行加工整理,形成适合数据分析的样式,从大量的,杂乱无章、难以理解的数据中,抽取并推导出对于解决问题有价值,有意义的数据。包括数据清洗,数据转化、数据提取以及数据计算等处理方法。4、数据分析运用适当的数据分析的方法和工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论。5、数据展现对数据进行可视化地展现,尽可能地多用图标、趋势图、饼图等形式进行说明和解释,能够直观地传达出数据分析的结果和观点。如果是最终数据是供自己参考,那么在数据展现时,能够清楚地了解到自己想要的数据,能够从数据中得到一定的启发即可。如果是需要供领导作决策和参考,则需要表现数据的可视化,在数据图标中做进一步的分析和说明。6、撰写报告,提出解决方案如果是自己进行数据分析,则对数据进行分析处理后,发现数据变化的原因,并提出解决出现这个数据的解决办法,投入优化和使用中。在多次测试中,找到解决问题的最优解。
数据化运营简述
发现思维方式真的很重要,此前很多时候在接需求,应对一个又一个临时需求,缺少思考转化.整个人每天都很忙,对自身很不好。人有时应该停下脚步,跳出来看自己的工作,是不是高效,是不是更有意义。
数据管理数据应用是一个很大体系,从底层采集、数据清洗转化到应用,分析的价值在于对业务赋予能量。 整个过程还需要数据监控体系,搭建监控体系需要先明确指标体系,第二需要配套的管理流程的应用,可以说监控体系发现问题,分析体系解决问题,最终产品服务不断迭代优化升级,我们在这个过程中也得到成长。
希望在后期的章节中,可以结合工作,来归纳总结数据运营分析工作的知识体系。
1、为什么要做数据化运营
2、如何建立数据化运营的体系
3、数据化运营的效果衡量
运营数据分析主要分析哪些方面?
1、引流通过分析PV、UV、访问次数、平均访问深度、跳出率等数据来衡量流量质量优劣。目的是保证流量的稳定性,并通过调整,尝试提高流量。2、转化完成引流工作后,下一步需要考虑转化,这中间需要经历浏览页面—注册成为用户—登陆—添加购物车—下单—付款—完成交易。每一个环节中都会有用户流失,提高各个环节的转化率是这一块工作的最核心——转化率的提升,意味着更低的成本,更高的利润。3、留存通过各个渠道或者活动把用户吸引过来,但是过一段时间就会有用户流失走掉,当然也会有一部分用户留下来,留下来这部分用户就叫做留存用户。4、复购有调查数据显示:一个满意的用户会带来8笔潜在生意,不满意的用户可能会影响25个人的购买意愿,可见回头客多么重要。复购率可以分为“用户复购率”和“订单复购率”,此外,“用户回购率”意义与复购率相似,也在此范围内。