强子对撞机

时间:2024-12-17 15:17:38编辑:阿星

强子对撞机有什么用?

问题一:什么是 大型强子对撞机 具体做什么用 。。 新华网消息:据美联社11日报道,大型强子对撞机(LHC)的建造目的是帮助科学家深入了解宇宙本质和物质本源。 问:什么是LHC? 答:它是世界上威力最强大的粒子加速器,掩埋在一条27公里长的地下隧道里,被大型探测器环绕。 问:“强子”是什么? 答:是指在原子核内发现的粒子―――例如质子或中子。 问:这台对撞机由谁建造,耗资多少? 答:欧洲核研究组织(CERN)的科学家在1984年提出了这一项目的构想。该组织的20个成员国以及美国、日本等观察员国家向这个项目捐助了约100亿美元。 问:对撞机如何工作? 答:对撞机以接近光速的速度发射质子绕隧道运动。超冷磁体引导质子相向运动并实现碰撞。 问:探测器有什么作用? 答:当质子对撞时,探测器将寻找除了我们已知的空间三维和时间一维之外的维度。 它们还将寻找“暗物质”(科学家认为大部分的宇宙由暗物质构成)、反物质(已知物质的镜像物质)和至今未曾现身的希格斯玻色子(它可以解释其他各种粒子如何具有质量)。之前所有这些物质的存在都是理论上的,从未得到证实。 问:这项实验中的“宇宙大爆炸”部分如何? 答:一部探测器将观察铅离子的对撞,模拟宇宙大爆炸瞬时之后的状况。科学家希望能从中了解到物质是如何形成的。 问:科学家还希望了解哪些内容? 答:如果对撞机证明了新粒子的存在,也许会对著名的物理学假说“弦理论”构成考验。该理论试图用统一的公式来描述量子力学和引力。

问题二:什么是大型强子对撞机,它有什么作用? 大型强子对撞器(Large Hadron Collider,LHC),是一座位于瑞士日内瓦近郊欧洲核子研究组织CERN的粒子加速器与对撞机,作为国际高能物理学研究之用。(全球定位点:北纬46°14′00″,东经6°03′00″46.233333333333;6.05) LHC已经建造完成,北京时间2008年9月10日下午15:30正式开始运作,成为世界上最大的粒子加速器设施。但在2008年9月19日,LHC第三与第四段之间用来冷却超导磁铁的液态氦发生了严重的泄漏,导致对撞机暂停运 CERN的大型强子对撞机转。  它将是世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,英文名称为LHC(Large Hadron Collider)。它是一个圆形加速器,深埋于地下100米,它的环状隧道有 27 公里长,因此走完全程要花4个多小时。你可以将百慕大、摩纳哥和4个梵蒂冈塞进它所占的区域内。近期,大型强子对撞机将投入使用。   位置:   它坐落于在瑞士日内瓦的欧洲核子研究中心(又名欧洲粒子物理实验室),横跨法国和瑞士的边境。   它有什么用途?   大型强子对撞机将两束质子分别加速到7TeV(7万亿电子伏特)的极高能量状态,并使之对撞。其能量状态可与宇宙大爆炸后不久的状态相比。粒子物理学家将利用质子碰撞后的产物探索物理现象,例如,寻找标准模型预言的希格斯粒子、探索超对称、额外维等超出标准模型的新物理。

问题三:大型强子对撞机是干什么用的?谁能用简单的话帮我解释? 高能粒子在高速撞击后,会产生碎片。就好像两个汽车相撞以后会撞成一堆零件一样。 这些碎片揭示着这些粒子的构成,同时伴随有很多物理现象的产生,比如质量和能量的转化等等。撞的越狠,揭示的东西可能越多。 所谓撞的越狠就是撞的时候速度越快,而大型强子对撞机就是利用长达几公里,几十公里,几百公里的环形加速器,把粒子加速到惊人的地步。 前段时间出事故的那个欧洲的世界最大的对撞机,就能将粒子加速到接近光速的地步。

问题四:告诉我 大型强子对撞机 到底是用来干啥的,怎么运 以接近光速的速度向前冲,两个强子束狭路相逢、迎面撞上……一瞬间,在一个极小的空间内产生了巨大的能量,比太阳中心热10万倍的高温。没错,这就是强子对撞机要制造的实验效果。
物理学家们试图让强子加速以后,相互碰撞可以达到宇宙大爆炸时宇宙中粒子能够达到的能量等级,窥视宇宙大爆炸的某些情形。
这一次,科学家们把发现暗物质、反物质、引力、多余维度等所有宇宙的秘密都寄希望于LHC,希望能够窥见那些迄今为止不为人知的冥冥之中的宇宙奥秘。祁鸣说,首要任务是找寻被喻为“上帝粒子”的“希格斯玻色子”。
大型强子对撞机的问世就是为了解开宇宙大爆炸之谜。

问题五:对撞机有什么用? 原理:用两个以99.99%光速运转的质子相撞产生的能量及物质进行探究目的:探索宇宙大爆炸时产生的物质及能量,进而知道构成物质质量的粒子,完全了解宇宙大爆炸时到底产生了什么.但是实验结果要在几年后得出. 跟你说一件事:在这次实验中还有不少我们中国的科学家 !!

问题六:什么事强子对撞机?有什么用处? 我来说个简单的:
对撞机是人类研究基本粒子的有力装备!
顾名思义把现在已知的最小粒子对撞,若有新的粒子出现,则说明还有更小的粒子结构.
强子(质子和中子)是我们现在已知的(实验证明的)最小微粒
明白了吧,让我们一起期待结果吧

问题七:强子对撞机是干什么用的 研究物质构成的,原理如下:如果你需要知道一个物体是什么组成就撞碎它,从碎片中,寻找构成物质的基本粒子。随着对装机能量的提升,期待撞出更多的碎片。


什么是大型强子对撞机?

世界上最大的原子对撞机,大型强子对撞机,在法瑞边界下形成一个17英里长(27公里)的环。(图像:{Max MixiLee布莱斯/CERN)“KDSPs”大Hadron Collider(LHC)是现代粒子物理学的奇迹,它使研究者能够深入现实。它的起源可以追溯到1977年,当时欧洲核子研究组织(CERN)前主任约翰·亚当斯爵士(Sir John Adams)建议修建一条地下隧道,可以容纳能够达到极高能量的粒子加速器,根据物理学家Thomas Schórner Sadenius在2015年发表的一篇历史论文, ,该项目在20年后,即1997年正式获得批准,在一个16.5英里长(27公里)的环上开始了建设,这个环穿过法瑞边界,能够将粒子加速到光速的99.99%,并将它们粉碎在一起。在这个环内,9300块磁铁以每秒11245次的速度引导着两个相反方向的带电粒子包,最后将它们聚集在一起进行正面碰撞。该设施每秒能产生约6亿次碰撞,喷射出难以置信的能量,偶尔还会喷射出一种奇异的、从未见过的重粒子。大型强子对撞机的运行能量是先前保持记录的粒子加速器费米实验室在美国退役的Tevatron “KDSP”的6.5倍。大型强子对撞机总共耗资80亿美元,其中5.31亿美元来自美国。来自60个不同国家的8000多名科学家合作进行了这项实验。加速器于2008年9月10日首次开启光束,碰撞粒子的强度仅为最初设计强度的千万分之一。 在开始运行前,有人担心新的原子粉碎机可能会破坏地球,可能是通过制造一个耗资巨大的黑洞。但任何一位著名的物理学家都会说,这种担心是没有根据的。 “大型强子对撞机是安全的,任何关于它可能带来风险的暗示都纯属虚构,”欧洲核子研究中心总干事罗伯特·艾玛过去曾对《生活科学》表示。 并不是说,如果使用不当,该设施不会有潜在的危害。如果你把手伸进光束中,光束将移动中的航空母舰的能量聚焦到小于一毫米的宽度,它会在光束中打一个洞,然后隧道中的辐射会杀死你。过去10年里, 的开创性研究 ,大型强子对撞机的两个主要实验,ATLAS和CMS,分别操作和分析它们的数据。这是为了确保两种合作都不会影响对方,并确保每一种合作都对其姐妹实验提供检查。这些仪器已经产生了2000多篇关于基本粒子物理许多领域的科学论文。 2012年7月4日,科学界屏息凝望,大型强子对撞机的研究人员宣布发现希格斯玻色子,这是一个有着50年历史的理论,被称为标准物理模型的最后一块拼图。标准模型试图解释所有已知的粒子和力(重力除外)及其相互作用。早在1964年,英国物理学家彼得·希格斯(Peter Higgs)就曾写过一篇关于现在以他的名字命名的粒子的论文,解释了宇宙中质量是如何产生的。 希格斯粒子实际上是一个渗透到所有空间的场,并拖拽着穿过它的每一个粒子。有些粒子在磁场中跋涉得更慢,这与它们较大的质量相对应。希格斯玻色子正是这一领域的一个体现,物理学家们已经追求了半个世纪。大型强子对撞机是为了最终捕获这个难以捉摸的采石场而建造的。最终发现希格斯粒子的质量是质子的125倍,彼得·希格斯和比利时的理论物理学家Francois Englert在2013被授予诺贝尔奖以预测它的存在。ge强子对撞机是由一位3D艺术家创作的。束管表示为透明管,反向旋转的质子束显示为红色和蓝色。(Daniel Dominguez/CERN) 即使有希格斯粒子在手,物理学家也不能休息,因为标准模型仍然有一些洞。首先,它不涉及引力,而引力主要被爱因斯坦的相对论所涵盖。它也不能解释为什么宇宙是由物质而不是反物质构成的,而反物质应该在时间开始时以大致相等的数量被创造出来。它对暗物质和暗能量完全沉默,而暗物质和暗能量在它诞生之初还没有被发现。 在大型强子对撞机启动之前,许多研究人员都会说,下一个伟大的理论是一个被称为超对称的理论,它在所有已知粒子中添加了相似但质量更大的孪生伙伴。其中的一个或多个重伙伴可能是构成暗物质的粒子的完美候选者。而且,超对称开始控制重力,解释了为什么它比其他三种基本力弱得多。在希格斯粒子被发现之前,一些科学家希望玻色子最终会和标准模型预测的略有不同,暗示着新的物理学。 但是当希格斯粒子出现时,它是异常正常的,正好在标准模型所说的质量范围内。虽然这对于标准模型来说是一个伟大的成就,但它却让物理学家们没有任何好的线索可以继续下去。一些人已经开始谈论过去几十年来追逐的理论,这些理论在理论上听起来不错,但似乎与实际观察不符。许多人希望大型强子对撞机的下一次数据采集运行将有助于清理其中的一些混乱。 大型强子对撞机于2018年12月关闭,进行两年的升级和维修。当它重新上线时,它将能够在能量稍微增加的情况下粉碎原子,但每秒的碰撞次数是原来的两倍。到时候会发现什么,谁也猜不到。已经有人在谈论一种更强大的粒子加速器来取代它,它位于同一区域,但大小是大型强子对撞机的四倍。这个巨大的替代品可能需要20年和270亿美元来建造。 额外的资源: 对大型强子对撞机进行虚拟巡演。阅读更多关于欧洲核子研究中心的科学知识。看看这组希格斯粒子图像


新的大型强子对撞机实验为何可以改变物理学?

在长达三年的小睡之后,世界上最强大的粒子对撞机苏醒了,准备帮助物理学家 探索 科学的最前沿,包括神秘的第五种自然力的是否存在。 “我们对跟进 [以前的] 异常情况感到非常兴奋,”哈珀说。“[但是,]我们也很紧张要让一切都正确。” 什么是大型强子对撞机? LHC 位于法国和瑞士的边界之间,是世界上最大(近 16 英里长)和最强大的粒子加速器。这个巨大的甜甜圈形对撞机使用超导磁体和质子束以极高的能量(例如 13.6 万亿电子伏特)将已知粒子碰撞在一起。 这个数字听起来可能很大,但如果换算成日常能量单位,如瓦特或焦耳,甚至不足以为 100 瓦的灯泡供电一小时(LHC 能量大约相当于 2.18 10^-6 焦耳) ,而一个 100 瓦的灯泡需要 360,000 焦耳才能点亮一小时。) 但是不要以为你被迷惑了——对于像灯泡这样相对较重的物体来说,这可能并没有多少能量,但它可以将非常轻的粒子加速到略低于光速的速度。 然后,散布在环路周围的探测器从这些碰撞中收集数据,以观察粒子分裂成更小的碎片,从而揭示物理学中未知的领域。这些碎片可以包括夸克之类的东西,甚至是一类称为玻色子的粒子。玻色子是包括光子在内的超轻粒子家族,它们负责在粒子之间产生力,包括强核力和弱核力以及电磁力。就著名的希格斯玻色子而言,它甚至负责赋予粒子质量。 除了将东西砸在一起带来的兴奋和好奇心之外,哈珀说科学家们使用大型强子对撞机来 探索 粒子物理学最重要理论的有效性:标准模型。自 1970 年代发展以来,该理论描述了科学家观察到的几乎所有亚原子粒子的行为,但最近的发现使这种至高无上的理论地位受到质疑,包括 2022 年费米实验室数据的发现,该发现表明存在某种玻色子,称为 W 玻色子,可能比标准模型预测的重得多。 哈珀说,随着大型强子对撞机的新升级,科学家们可能最终能够解开这个谜团。如果 LHC 新的运行的数据观察到标准模型未能预测到的行为,这可能是标准模型尚不知道的力或粒子的迹象。 “瞧,新物理学有发现了!” 哈珀说。 检测 W 玻色子的实验 大型强子对撞机为何停止运行? 过去,大型强子对撞机的运行一直是旁观者担心的主题,他们曾经担心对撞机发生灾难性事故,会产生危险的黑洞(事实上它不会产生),但怀疑者可以高枕无忧,因为知道对撞机的三年的休息只不过是定期的升级和维护。 事实上,这不是第一次也不是最后一次发生这种情况。根据运行时间表,大型强子对撞机计划在 2030 年代再停止两次。哈珀说,这些关闭的主要目的是逐步提升抛向对撞机内的质子束的能量能力,以提高粒子碰撞在一起的机会。 “物理学家想要更多的碰撞,”哈珀说。“LHC 及其探测器正在升级,以提供和记录尽可能多的数据,这让物理学家异常欣喜。” LHC 上周发出了两束测试光束,该团队打算在今年夏天晚些时候开始为 Run 3 认真收集数据。除了沿途短暂的维护中断外,哈珀说 Run 3 将持续到 2025 年底。 LHC 获得了哪些升级? 在 2018 年底开始的最近一次关闭期间,大型强子对撞机获得了两项主要升级: 提高其仪器的能量能力,使研究人员能够创造更多更快的碰撞 更灵敏的数据收集软件,具有更高的捕获率,以增加研究人员可以记录和分析的碰撞次数 总之,这些升级应该为探测器创建和记录更多的碰撞。根据欧洲核子研究中心的说法,哈珀工作的探测器(CMS)应该期望“在这次物理运行期间观察到比前两次物理运行加起来更多的碰撞”。其他正在进行的实验,包括 ATLAS、ALICE 和 LHCb,可能会看到超过以前数量的 50 倍的碰撞。 除了升级现有实验外,Run 3 还将推出两个新实验——FASER 和 SND@LHC——专门设计用于寻找标准模型之外的物理实验。 左边显示了两个 W 玻色子和一个 Z 玻色子被释放,而另一个显示两个 Z 玻色子被释放。 大型强子对撞机现在能做出什么发现? 对于哈珀来说,大型强子对撞机在第 3 轮运行期间可能做出的最令人兴奋的发现之一是深入挖掘 LHCb 在最后一次运行结束时观察到的异常现象,该异常似乎指向超出标准模型物理学。在第 2 轮数据中,科学家们看到一种称为 B 介子的玻色子分解成比标准模型预测的更多的电子。 如果哈珀及其同事能够用更多数据证实这一趋势,科学家们认为这可能是新的第五种力作用于这些粒子的证据。 “现在说任何 [确定] 还为时过早,但这让我们非常兴奋,我们真的很期待 Run 3 能够对此提供更多的信息,” 哈珀 说。 除了 探索 这种异常现象,大型强子对撞机实验者还希望通过寻找质子碰撞中丢失的动量数据来更深入地挖掘其他谜团,包括构成暗物质的粒子。特别是 FASER 将在这次狩猎中归零。 然而,尽管所有这些诱人的数据触手可及,但哈珀表示,在收集这些数据和真正从中得出任何结论之间仍然存在相当长的时间。对于像哈珀这样热心的科学家来说,这可能是整个努力过程中最具挑战性的部分。 “我们将不得不等待收集和仔细分析数据,”他说。“[这] 对我们来说很艰难,但我们已准备好了!”

为什么说大型强子对撞机在无形地推动物理学发展?

大约7年前,马萨诸塞大学的物理学家Stephane Willocq着迷于一套理论,该理论预言了隐藏在经典四维时空中的蜷缩额外维度的存在。额外空间维度的概念很吸引人,因为它允许我们从不同的角度来看待粒子物理学中的基本问题。作为一名实验物理学家,Willocq能做的不仅仅是思考。在欧洲核子研究中心(CERN)的大型强子对撞机(LHC)中进行的阿特拉斯(ATLAS)实验期间,Willocq对自己钟爱的理论进行了检验。额外空间的测试根据该理论的预言,蜷缩的额外维度将影响大型强子对撞机中质子与质子碰撞的结果。理论上,碰撞将产生比预期更多的高能粒子。然而,经过几次搜索,Willocq没有发现任何异常。Willocq表示,这是一个伟大的想法,但令人失望的是,它一点一点地消失了。但这就是科学进步的工作原理——通过消除的过程找到正确的想法。大型强子对撞机是目前最为强大的粒子加速器,它的最重要成就是发现了希格斯玻色子。除此之外,物理学家一直把大型强子对撞机当做一个同样重要的科学探索:测试、限制和消除数以百计的物理学理论,例如,为什么引力远远弱于其他已知的基本力。Willocq表示,只有一个正确的理论,只是我们还没有找到它。现在,物理学家已经完成了大型强子对撞机的第二轮运行,这已经覆盖了大量的领域,消除了众多物理学理论中的最简单版本。它们覆盖的相空间是之前寻找重粒子的四倍,并对物理上的可能性设置了严格的限制。这些研究并没有像希格斯玻色子那样得到同样的关注,但是这些无效的结果——这些结果并不支持某种理论假说——也推动了物理学的发展。一个意想不到的信号在找到了最明显的线索之后,物理学家目前正在调整他们的方法,并在追求新物理学的过程中考虑新的可能性。迄今为止,物理学家经常使用一套简单的公式来寻找新粒子。在粒子碰撞中产生的大量粒子几乎会立即衰变,变成更稳定的粒子。如果物理学家能测量所有这些粒子,他们就能重建产生这些粒子的原始粒子的质量和性质。在1995年,物理学家发现了夸克。在2012年,又发现了希格斯玻色子。但寻找下一个新事物,可能需要不同的策略。威斯康星大学CMS实验的物理学家Tulika Bose表示,发现新的物理现象比我们预想的更具挑战性,这会让物理学家迸发出新的灵感。一种观点认为,也许物理学家太过专注于瞬间衰变的粒子,以至于他们错过了大量的粒子,而这些粒子在衰变前可以移动数米。物理学家正在重新思考如何重建这些数据,以构建一个更大的网络,并有可能捕捉到具有这些特征的粒子。Bose表示,如果我们只使用现有的标准分析方法,我们肯定不会对新粒子敏感,我们需要探索创新的方法。精确测量由于从质子碰撞中还没有找到额外空间维度的证据,Willocq决定在实验中使用另一种方法:精确测量。模型还可以预测粒子的性质,例如,它们衰变为一组粒子与另一组粒子的频率。如果精确的测量结果与粒子物理标准模型的预测有偏差,这就意味着有新的东西在起作用。一些新的物理模型预测了罕见亚原子过程的增强速率,只是它们的速率如此之低,以至于物理学家还无法测量它们。在过去,对已知粒子的精确测量已经推翻了看似坚不可摧的范式。例如,在20世纪40年代,对中子的磁矩测量表明,它并不是之前假定的基本粒子。这最终帮助发现了构成中子的粒子——夸克。另一个例子,对某些物质和反物质粒子不匹配衰变的测量,物理学家预言了新夸克的存在,这就是后来发现的顶夸克和底夸克。大型强子对撞机研究项目的计划是收集大量数据,这将给物理学家提供所需的分辨率,以检查粒子物理标准模型的每一个“阴暗角落”。该计划会自然而然地推动物理学搜索方法朝着更精细、更精确的方向发展,这将帮助物理学家限制新物理学可能带来的偏差。由于这些理论预言中有许多从未经过彻底的检验,物理学家希望他们能发现一些微小的偏差,从而开启物理学研究的新纪元。大自然也许对我们很苛刻,但也许大自然在考验我们,让我们变得更强大,最终可以找到大统一理论。

上一篇:sx4天语

下一篇:没有了