中考数学题型全归纳
近几年中考数学压轴题的考查内容、考查模式变化并不大。下面我就整理了中考数学压轴题型,供大家参考。 一元二次方程与函数 在这一类问题当中,尤以涉及的动态几何问题为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。 证明直线的平行或垂直 1、证明两条直线平行的主要依据和方法: (1)定义、在同一平面内不相交的两条直线平行。 (2)平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。 (3)平行线的判定:同位角相等(内错角或同旁内角),两直线平行。 (4)平行四边形的对边平行。 (5)梯形的两底平行。 (6)三角形(或梯形)的中位线平行与第三边(或两底) (7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。 2、证明两条直线垂直的主要依据和方法: (1)两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。 (2)直角三角形的两直角边互相垂直。 (3)三角形的两个锐角互余,则第三个内角为直角。 (4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。 (5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。 (6)三角形(或多边形)一边上的高垂直于这边。 (7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。 (8)矩形的两临边互相垂直。 (9)菱形的对角线互相垂直。 (10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。 (11)半圆或直径所对的圆周角是直角。 (12)圆的切线垂直于过切点的半径。 (13)相交两圆的连心线垂直于两圆的公共弦。 形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。 在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 列方程(组)解应用题 在中考数学中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。 实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。 阅读理解问题 如今中考数学题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。 对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键。
中考数学必考题型有哪些?
1、图形位置关系图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。2、动态几何一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对综合分析能力进行考察。3、解直角三角形的实际应用通常以实际生活为背景,考查运用直角三角形知识建立数学模型的能力,运用“遇斜化直”的数学思想,即通过作辅助线把它转化为直角三角形问题,然后根据已知条件与未知元素之间的关系,利用解直角三角形的知识,列出方程来求解。4、阴影部分面积的相关计算这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。5、一次函数和反比例函数的综合题一般为3问,第一问常常考查待定系数法确定二次函数解析式,第二问结合三角形周长,面积及线段长等问题考查二次函数解析式及最值问题,第三问多是几何图形的探究问题。
求全国各地历年中考关于一元二次方程的应用题10道
1、在日常生活中,我们经常有目的地收集数据,分析数据,作出预测.
(1)下图是小芳家2009年全年月用电量的条形统计图。
根据图中提供的信息,回答下列问题:
①2009年小芳家月用电量最小的是 月,四个季度中用电量最大的是第 季度;
②求2009年5月至6月用电量的月增长率;
(2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时?
2、由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为 ,则根据题意可列方程为
3、关于x的方程KX2+(K+1)X+K/4=0, 有两个不相等的实数根.
(1)求k的取值范围。
(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由
4、)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
5、某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是…………………………【 】
.